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Abstract — Metadata is data about data. An 

annotation is also a metadata. Annotations like 

comment, explanation, presentational mark-up will 

attached to text, image or other information. No of 

companies generate and share textual explanation of 

their products, services and actions. In this paper, we 

focus on two ways to combine these two pieces of 

evidence, content value and querying value: a model 

that considers both components conditionally 

independent and a linear weighted model we proposed 

adaptive techniques to suggest relevant attributes to 

annotate a document, while trying to satisfy the user 

querying needs. A novel approach alternative 

approach that facilitates the generation of the 

structured metadata by identifying documents that are 

likely to contain information of interest and this 

information is going to be subsequently useful for 

querying the database. Experimental results show that 

our approach generates huge results compared to 

approaches that rely only on the textual content or 

only on the query workload, to identify attributes of 

interest. 
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I. INTRODUCTION 

The Open Annotation Core Data Model specifies an 

interoperable framework for creating associations 

between related resources, annotations, using a 

methodology that conforms to the Architecture of the 

World Wide Web. There are many application 

domains where users create and share information; for 

instance, news blogs, scientific networks, social 

networking groups, or disaster management networks. 

Current information sharing tools, like content 

management software (e.g., Microsoft Share- Point), 

allow users to share documents and annotate (tag) 

them in an ad hoc way. Similarly, Google Base [1] 

allows users to define attributes for their objects or 

choose from predefined templates. This annotation 

process can facilitate subsequent information 

discovery. Many annotation systems allow only 

“untyped” keyword annotation: for instance, a user 

may annotate a weather report using a tag such as 

“Storm Category 3.” Annotation strategies that use 

attribute-value pairs are generally more expressive, as 

they can contain more information than untyped 

approaches. In such settings, the above information 

can be entered as (Storm Category, 3). A recent line of 

work toward using more expressive queries that 

leverage such annotations, is the “pay-as-you-go” 

querying strategy in Dataspaces [2]: In Dataspaces, 

users provide data integration hints at query time. The 

assumption in such systems is that the data sources 

already contain structured information and the 

problem is to match the query attributes with the 

source attributes. Many systems, though, do not even 

have the basic “attribute-value” annotation that would 

make a “pay-asyou- go” querying feasible. 

Annotations that use “attributevalue” pairs require 

users to be more principled in their annotation efforts. 

Users should know the underlying schema and field 

types to use; they should also know when to use each 

of these fields. With schemas that often have tens or 

even hundreds of available fields to fill, this task 

become complicated and cumbersome. This results in 

data entry users ignoring such annotation capabilities. 

Even if the system allows users to arbitrarily annotate 

the data with such attribute-value pairs, the users are 

often unwilling to perform this task: The task not only 

requires considerable effort but it also has unclear 

usefulness for subsequent searches in the future: who 

is going to use an arbitrary, undefined in a common 

schema, attribute type for future searches? But even 

when using a predetermined schema, when there are 

tens of potential fields that can be used, which of these 

fields are going to be useful for searching the database 

in the future? Such difficulties results in very basic 

annotations, if any at all, that is often limited to simple 

keywords. Such simple annotations make the analysis 

and querying of the data cumbersome. Users are often 

limited to plain keyword searches, or have access to 

very basic annotation fields, such as “creation date” 

and “owner of document.” In this paper, we propose 

Collaborative Adaptive Data Sharing platform 

(CADS), which is an “annotate-as-youcreate” 

infrastructure that facilitates fielded data annotation. A 

key contribution of our system is the direct use of the 

query workload to direct the annotation process, in 

addition to examining the content of the document.  
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Example 1. Our motivating scenario is a disaster 

management situation, inspired by the experience in 

building a Business Continuity Information Network 

[3] for disaster situations in South Florida. During 

disasters, we have many users and organizations 

publishing and consuming information. For example, 

in a hurricane situation, local government agencies 

report shelter locations, damages in structures, or 

structural warnings. Meteorological Agencies report 

the status of the hurricane, its position, and particular 

warnings. Business owners describe the status and 

needs of their stores and personnel. Volunteers share 

their activities and look for critical needs. The 

information produced and consumed in this domain is 

dynamic and unpredictable, and agencies have their 

own protocols and formats of sharing data, for 

example, the Miami-Dade County Emergency Office 

publishes hourly document reports. Further, learning 

the schema from previous disasters is hard, as new 

situations, needs, and requirements arise.  

In Fig. 1a, we show a report extracted from the 

National Hurricane Center repository, describing the 

status of a hurricane event in 2008. The report gives 

the current storm location, wind speed, warnings, 

category, advisory identifier number, and the date it 

was disclosed. Even though this is a text document, it 

contains implicitly many attribute names and values, 

for example, (Storm Category, 3). If we had these 

values properly annotated (e.g., as in Fig. 1b), we 

could improve the quality of searching through the 

database. For instance, Fig. 1c shows three sample 

queries for which the report of Fig. 1a is a good 

answer and the lack of the appropriate annotations 

makes it hard to retrieve it and rank it properly. 

The goal of CADS is to encourage and lower the cost 

of creating nicely annotated documents that can be 

immediately useful for commonly issued semi 

structured queries such as the ones in Fig. 1c. Our key 

goal is to encourage the annotation of the documents 

at creation time, while the creator is still in the 

“document generation” phase, even though the 

techniques can also be used for post generation 

document annotation. In our scenario, the author 

generates a new document and uploads it to the 

repository. After the upload, CADS analyzes the text 

and creates an adaptive insertion form. The form 

contains the best attribute names given the document 

text and the information need (query workload), and 

the most probable attribute values given the document 

text. The author (creator) can inspect the form, modify 

the generated metadata as necessary, and submit the 

annotated document for storage. We should note that 

inserting fielded metadata is not the only scenario in 

which the CADS strategies are applicable. 

Consider the case of processing the documents after 

the hurricane, to identify and extract important 

metadata from the documents, so that this information 

can be used efficiently in the future (e.g., using a 

Dataspaces approach). If we use automated 

information extraction (IE) algorithms to extract 

targeted relations from the document (e.g., addresses 

of evacuated buildings), it is important to process only 

documents that actually contain such information: 

when we process documents that do not contain the 

targeted information and we use automated 

information extraction algorithms to extract such 

fields, we often face a significant number of false 

positives, which can lead to significant quality 

problems in the data [4]. Similarly, if the documents 

are processed by humans (i.e., where there is low 

probability of false positives), asking humans to 

inspect documents, where no relevant information is 

present, is expensive and counterproductive. For 

example, if only 1 percent of the documents contain 

information about the address of evacuated buildings, 

it is going to be unnecessarily expensive to ask 

humans to inspect all documents to identify such 

information: It is much better to target and process 

only promising documents, with high probability of 

containing relevant information. 
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II   Problem Statement 
 
Large number of organizations today generates and 

share textual descriptions of their products, services, 

and actions. Such collections of textual data contain 

significant amount of structured information, which 

remains buried in the unstructured text. While 

information extraction algorithms facilitate the 

extraction of structured relations, they are often 

expensive and inaccurate, especially when operating 

on top of text that does not contain any instances of 

the targeted structured information. We present a 

novel alternative approach that facilitates the 

generation of the structured metadata by identifying 

documents that are likely to contain information of 

interest and this information is going to be 

subsequently useful for querying the database. 

 

 
III Related Work 

 
There are several systems that favor the collaborative 

annotation of objects and use previous annotations or 

tags to annotate new objects. There have been 

significant amounts of work in predicting the tags for 

documents or other resources (WebPages, images, 

videos) [13], [14], [15], [6], [1]. Depending on the 

object and the user involvement, these approaches 

have different assumptions on what is expected as an 

input; nevertheless, the goals are similar as they 

expect to find missing tags that are related with the 

object. We argue that our approach is different as we 

use the workload to augment the document visibility 

after the tagging process. Compared with the other 

approaches, precision is a secondary goal as we expect 

that the annotator can improve the annotations on the 

process. On the other hand, the discovered tags assist 

on the tasks of retrieval instead of simply 

bookmarking. Dataspaces and pay-as-you-go 

integration. The integration model of CADS is similar 

to that of dataspaces [8], where a loosely integration 

model is proposed for heterogeneous sources. The 

basic difference is that dataspaces integrate existing 

annotations for data sources, to answer queries. Our 

work suggests the appropriate annotation during 

insertion time, and also takes into consideration the 

query workload to identify the most promising 

attributes to add. Another related data model is that of 

Google Base [1], where users can specify their own 

attribute/value pairs, in addition to the ones proposed 

by the system. However, the proposed attributes in 

Google Base are hard-coded for each item category 

(e.g., real-estate property). In CADS, the goal is to 

learn what attributes to suggest. Pay-as-you go 

integration techniques like PayGo [9] and [2] are 

useful to suggest candidate matchings at query time. 

However, no previous work considers this problem at 

insertion time, as in CADS. The work on Peer Data 

Management Systems [10] is a precursor of the above 

projects. Content management products. Microsoft 

Sharepoint [11] and SAP NetWeaver [12] allow users 

to share documents, annotate them, and perform 

simple keyword queries. Hard-coded attributes can be 

added to specialized insertion forms. CADS improve 

these platforms by learning the user information 

demand and adjusting the insertion forms accordingly. 

Information extraction. Information extraction is 

related to this effort, mainly in the context of value 

suggestion for the computed attributes. (See 13] for an 

overview of IE.) We can broadly separate the area into 

two main efforts: Closed IE and Open IE. Closed IE 

requires the user to define the schema, and then the 

system populates the tables with relations extracted 

from the text. Our work on attribute suggestion 

naturally complements closed IE, as we identify what 

attributes are likely to appear within a document. Once 

we have that information, we can then employ the IE 

system to extract the values for the attributes. Open IE 

[4] is closer to the needs of CADS. In particular, Open 

IE generates RDF-like triplets, for example, (Gustav is 

category 3) with no input from the user. Open IE leads 

to a very large number of triplets, which means that 

even after the successful extraction of the attribute 

values, we still have to deal with the problem of 

schema explosion that prevents the successful 

execution of structured queries that require knowledge 

of the attribute names and values that appear within a 

document. In principle, we could use Open IE, and 

then pay-as-you-go solutions for identifying 

equivalency relations across attribute names; however, 

it is much better to deal with the problem early-on, 

during document generation, instead of trying to fix 

issues that could be prevented with proper design. The 

CIMPLE project [5], [6] uses IE techniques to create 

and manage data-rich online communities, like the 

DBLife community. In contrast to CIMPLE, where 

data are extracted from existing sources and a domain 

expert must create a domain schema, CADS is a data 

sharing environment where users explicitly insert the 

data and the schema automatically evolves with time. 

Nevertheless, the IE and mass collaboration 

techniques of CIMPLE can help in creating adaptive 

insertion forms in CADS. Schema evolution. Note that 

the adaptive annotation in CADS can be viewed as 

semiautomatic schema evolution. Previous work on 

schema evolution [7] did not address the problem of 

what attribute to add to the schema, but how to 

support querying and other database operations when 

the schema changes. Query forms. Existing work on 

query forms can be leveraged in creating the CADS 

adaptive query forms. Jayapandian and Jagadish [2] 

propose an algorithm to extract a query form that 

represents most of the queries in the database using 

the “querability” of the columns, while in [9] they 

extend their work discussing forms customization. 



IJDCST @Dec-2015, Issue- V-3, I-8, SW-14 
ISSN-2320-7884 (Online) 
ISSN-2321-0257 (Print) 
 

54 www.ijdcst.com 

 

Nardi and Jagadish [3] use the schema information to 

autocomplete attribute or value names in query forms. 

In [6], keyword queries are used to select the most 

appropriate query forms. Our work can be considered 

a dual approach: instead of generating query forms 

using the database contents, we create the schema and 

contents of the database by considering the content of 

the query workload (and the contents of the 

documents, of course). The work in USHER [11] is 

also related: in USHER, the system automatically 

decides which questions in a survey are the most 

important to ask, given past experience with the 

completion of past surveys. In a sense, USHER is 

complementary to CADS: once we identify the 

attributes and values in the documents using CADS, 

we can then use USHER to model the dependencies 

across attributes and minimize the number of 

questions asked. Probabilistic models. Probabilistic 

tag recommendation systems [12], [13] have a similar 

goal like our system. However, the main difference is 

that we use the query workload in our model, 

reflecting the user interest.  

 

ATTRIBUTES SUGGESTION 
 

In this section, we study and propose solutions for the 

“attributes suggestion” problem. From the problem 

definition we identify two, potentially conflicting, 

properties for identifying and suggesting attributes for 

a document d: First, the attributes must have high 

querying value (QV) with respect to the query 

workload W. That is, they must appear in many 

queries in W, because the frequent attributes in W 

have a greater potential to improve the visibility of d.  

Second, the attributes must have high content value 

(CV) with respect to dt. That is, they must be relevant 

to dt. Otherwise, the user will probably dismiss the 

suggestions and d will not be properly annotated. We 

combine both objectives, in a principled way, using a 

probabilistic approach. Our theoretical model is 

similar to the idea of language models [5], with one 

key difference: our model assume that attributes are 

generated by two processes, in parallel: 1) By 

inspecting the content of the document and extracting 

a set of attributes related to the content of the 

document, following a probability distribution given 

by an (unknown to us) joint probability distribution 

and 2) By knowing the types of queries that users 

typically issue to the database, following again a 

(unknown to us) joint probability distribution. Of 

course, the problem is inherently intractable, if we 

consider all possible dependencies across attributes, 

document content, and workload: it is very difficult to 

estimate the full joint distribution of so many 

variables. Following the common practice, when 

estimating language models, we consider each 

attribute Aj independently, and we compute the k 

attributes that maximize p. Given W and d as the 

forecasts from different sources of evidence, our 

system (CADS) is the decision manager, with a 

specific prior P4 that decides how to combine the 

probability estimates from multiple sources. We 

experiment with two approaches:  we combine the 

information from the forecasters assuming conditional 

independence, given Aj; in we build an approach that 

assumes conditional independence among the 

forecasters. 

 
 

Fig: 2 running example. 

 

When we increase the size of the training set. As 

expected, the proposed strategies increase their quality 

when we increase the training data size. The QV line 

is constant because it does not use the database but 

only the query workload. 

 

IV Conclusion 

 

We present two ways to combine these two pieces of 

evidence, content value and querying value: a model 

that considers both components conditionally 

independent and a linear weighted model we proposed 

adaptive techniques to suggest relevant attributes to 

annotate a document, while trying to satisfy the user 

querying needs. Our solution is based on a 

probabilistic framework that considers the evidence in 

the document content and the query workload. 

Experiments show that using our techniques, we can 

suggest attributes that improve the visibility of the 

documents with respect to the query workload by up 

to 50 percent. That is, we show that using the query 

workload can greatly improve the annotation process 

and increase the utility of shared data. 
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