
IJDCST @Dec-2015, Issue- V-3, I-8, SW-14
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

51 www.ijdcst.com

 Content and Querying Value for New Document

Annotation
Alibasha Shaik1, Md Imran2

1M.Tech (CSE), Nimra Institute of Science and Technology, A.P., India.

2Asst. Professor, Dept. of Computer Science & Engineering, Nimra Institute of Science and Technology, A.P., India.

Abstract — Metadata is data about data. An

annotation is also a metadata. Annotations like

comment, explanation, presentational mark-up will

attached to text, image or other information. No of

companies generate and share textual explanation of

their products, services and actions. In this paper, we

focus on two ways to combine these two pieces of

evidence, content value and querying value: a model

that considers both components conditionally

independent and a linear weighted model we proposed

adaptive techniques to suggest relevant attributes to

annotate a document, while trying to satisfy the user

querying needs. A novel approach alternative

approach that facilitates the generation of the

structured metadata by identifying documents that are

likely to contain information of interest and this

information is going to be subsequently useful for

querying the database. Experimental results show that

our approach generates huge results compared to

approaches that rely only on the textual content or

only on the query workload, to identify attributes of

interest.

Keywords — Document annotation, adaptive

forms, and collaborative platforms

I. INTRODUCTION

The Open Annotation Core Data Model specifies an

interoperable framework for creating associations

between related resources, annotations, using a

methodology that conforms to the Architecture of the

World Wide Web. There are many application

domains where users create and share information; for

instance, news blogs, scientific networks, social

networking groups, or disaster management networks.

Current information sharing tools, like content

management software (e.g., Microsoft Share- Point),

allow users to share documents and annotate (tag)

them in an ad hoc way. Similarly, Google Base [1]

allows users to define attributes for their objects or

choose from predefined templates. This annotation

process can facilitate subsequent information

discovery. Many annotation systems allow only

“untyped” keyword annotation: for instance, a user

may annotate a weather report using a tag such as

“Storm Category 3.” Annotation strategies that use

attribute-value pairs are generally more expressive, as

they can contain more information than untyped

approaches. In such settings, the above information

can be entered as (Storm Category, 3). A recent line of

work toward using more expressive queries that

leverage such annotations, is the “pay-as-you-go”

querying strategy in Dataspaces [2]: In Dataspaces,

users provide data integration hints at query time. The

assumption in such systems is that the data sources

already contain structured information and the

problem is to match the query attributes with the

source attributes. Many systems, though, do not even

have the basic “attribute-value” annotation that would

make a “pay-asyou- go” querying feasible.

Annotations that use “attributevalue” pairs require

users to be more principled in their annotation efforts.

Users should know the underlying schema and field

types to use; they should also know when to use each

of these fields. With schemas that often have tens or

even hundreds of available fields to fill, this task

become complicated and cumbersome. This results in

data entry users ignoring such annotation capabilities.

Even if the system allows users to arbitrarily annotate

the data with such attribute-value pairs, the users are

often unwilling to perform this task: The task not only

requires considerable effort but it also has unclear

usefulness for subsequent searches in the future: who

is going to use an arbitrary, undefined in a common

schema, attribute type for future searches? But even

when using a predetermined schema, when there are

tens of potential fields that can be used, which of these

fields are going to be useful for searching the database

in the future? Such difficulties results in very basic

annotations, if any at all, that is often limited to simple

keywords. Such simple annotations make the analysis

and querying of the data cumbersome. Users are often

limited to plain keyword searches, or have access to

very basic annotation fields, such as “creation date”

and “owner of document.” In this paper, we propose

Collaborative Adaptive Data Sharing platform

(CADS), which is an “annotate-as-youcreate”

infrastructure that facilitates fielded data annotation. A

key contribution of our system is the direct use of the

query workload to direct the annotation process, in

addition to examining the content of the document.

IJDCST @Dec-2015, Issue- V-3, I-8, SW-14
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

52 www.ijdcst.com

Example 1. Our motivating scenario is a disaster

management situation, inspired by the experience in

building a Business Continuity Information Network

[3] for disaster situations in South Florida. During

disasters, we have many users and organizations

publishing and consuming information. For example,

in a hurricane situation, local government agencies

report shelter locations, damages in structures, or

structural warnings. Meteorological Agencies report

the status of the hurricane, its position, and particular

warnings. Business owners describe the status and

needs of their stores and personnel. Volunteers share

their activities and look for critical needs. The

information produced and consumed in this domain is

dynamic and unpredictable, and agencies have their

own protocols and formats of sharing data, for

example, the Miami-Dade County Emergency Office

publishes hourly document reports. Further, learning

the schema from previous disasters is hard, as new

situations, needs, and requirements arise.

In Fig. 1a, we show a report extracted from the

National Hurricane Center repository, describing the

status of a hurricane event in 2008. The report gives

the current storm location, wind speed, warnings,

category, advisory identifier number, and the date it

was disclosed. Even though this is a text document, it

contains implicitly many attribute names and values,

for example, (Storm Category, 3). If we had these

values properly annotated (e.g., as in Fig. 1b), we

could improve the quality of searching through the

database. For instance, Fig. 1c shows three sample

queries for which the report of Fig. 1a is a good

answer and the lack of the appropriate annotations

makes it hard to retrieve it and rank it properly.

The goal of CADS is to encourage and lower the cost

of creating nicely annotated documents that can be

immediately useful for commonly issued semi

structured queries such as the ones in Fig. 1c. Our key

goal is to encourage the annotation of the documents

at creation time, while the creator is still in the

“document generation” phase, even though the

techniques can also be used for post generation

document annotation. In our scenario, the author

generates a new document and uploads it to the

repository. After the upload, CADS analyzes the text

and creates an adaptive insertion form. The form

contains the best attribute names given the document

text and the information need (query workload), and

the most probable attribute values given the document

text. The author (creator) can inspect the form, modify

the generated metadata as necessary, and submit the

annotated document for storage. We should note that

inserting fielded metadata is not the only scenario in

which the CADS strategies are applicable.

Consider the case of processing the documents after

the hurricane, to identify and extract important

metadata from the documents, so that this information

can be used efficiently in the future (e.g., using a

Dataspaces approach). If we use automated

information extraction (IE) algorithms to extract

targeted relations from the document (e.g., addresses

of evacuated buildings), it is important to process only

documents that actually contain such information:

when we process documents that do not contain the

targeted information and we use automated

information extraction algorithms to extract such

fields, we often face a significant number of false

positives, which can lead to significant quality

problems in the data [4]. Similarly, if the documents

are processed by humans (i.e., where there is low

probability of false positives), asking humans to

inspect documents, where no relevant information is

present, is expensive and counterproductive. For

example, if only 1 percent of the documents contain

information about the address of evacuated buildings,

it is going to be unnecessarily expensive to ask

humans to inspect all documents to identify such

information: It is much better to target and process

only promising documents, with high probability of

containing relevant information.

IJDCST @Dec-2015, Issue- V-3, I-8, SW-14
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

53 www.ijdcst.com

II Problem Statement

Large number of organizations today generates and

share textual descriptions of their products, services,

and actions. Such collections of textual data contain

significant amount of structured information, which

remains buried in the unstructured text. While

information extraction algorithms facilitate the

extraction of structured relations, they are often

expensive and inaccurate, especially when operating

on top of text that does not contain any instances of

the targeted structured information. We present a

novel alternative approach that facilitates the

generation of the structured metadata by identifying

documents that are likely to contain information of

interest and this information is going to be

subsequently useful for querying the database.

III Related Work

There are several systems that favor the collaborative

annotation of objects and use previous annotations or

tags to annotate new objects. There have been

significant amounts of work in predicting the tags for

documents or other resources (WebPages, images,

videos) [13], [14], [15], [6], [1]. Depending on the

object and the user involvement, these approaches

have different assumptions on what is expected as an

input; nevertheless, the goals are similar as they

expect to find missing tags that are related with the

object. We argue that our approach is different as we

use the workload to augment the document visibility

after the tagging process. Compared with the other

approaches, precision is a secondary goal as we expect

that the annotator can improve the annotations on the

process. On the other hand, the discovered tags assist

on the tasks of retrieval instead of simply

bookmarking. Dataspaces and pay-as-you-go

integration. The integration model of CADS is similar

to that of dataspaces [8], where a loosely integration

model is proposed for heterogeneous sources. The

basic difference is that dataspaces integrate existing

annotations for data sources, to answer queries. Our

work suggests the appropriate annotation during

insertion time, and also takes into consideration the

query workload to identify the most promising

attributes to add. Another related data model is that of

Google Base [1], where users can specify their own

attribute/value pairs, in addition to the ones proposed

by the system. However, the proposed attributes in

Google Base are hard-coded for each item category

(e.g., real-estate property). In CADS, the goal is to

learn what attributes to suggest. Pay-as-you go

integration techniques like PayGo [9] and [2] are

useful to suggest candidate matchings at query time.

However, no previous work considers this problem at

insertion time, as in CADS. The work on Peer Data

Management Systems [10] is a precursor of the above

projects. Content management products. Microsoft

Sharepoint [11] and SAP NetWeaver [12] allow users

to share documents, annotate them, and perform

simple keyword queries. Hard-coded attributes can be

added to specialized insertion forms. CADS improve

these platforms by learning the user information

demand and adjusting the insertion forms accordingly.

Information extraction. Information extraction is

related to this effort, mainly in the context of value

suggestion for the computed attributes. (See 13] for an

overview of IE.) We can broadly separate the area into

two main efforts: Closed IE and Open IE. Closed IE

requires the user to define the schema, and then the

system populates the tables with relations extracted

from the text. Our work on attribute suggestion

naturally complements closed IE, as we identify what

attributes are likely to appear within a document. Once

we have that information, we can then employ the IE

system to extract the values for the attributes. Open IE

[4] is closer to the needs of CADS. In particular, Open

IE generates RDF-like triplets, for example, (Gustav is

category 3) with no input from the user. Open IE leads

to a very large number of triplets, which means that

even after the successful extraction of the attribute

values, we still have to deal with the problem of

schema explosion that prevents the successful

execution of structured queries that require knowledge

of the attribute names and values that appear within a

document. In principle, we could use Open IE, and

then pay-as-you-go solutions for identifying

equivalency relations across attribute names; however,

it is much better to deal with the problem early-on,

during document generation, instead of trying to fix

issues that could be prevented with proper design. The

CIMPLE project [5], [6] uses IE techniques to create

and manage data-rich online communities, like the

DBLife community. In contrast to CIMPLE, where

data are extracted from existing sources and a domain

expert must create a domain schema, CADS is a data

sharing environment where users explicitly insert the

data and the schema automatically evolves with time.

Nevertheless, the IE and mass collaboration

techniques of CIMPLE can help in creating adaptive

insertion forms in CADS. Schema evolution. Note that

the adaptive annotation in CADS can be viewed as

semiautomatic schema evolution. Previous work on

schema evolution [7] did not address the problem of

what attribute to add to the schema, but how to

support querying and other database operations when

the schema changes. Query forms. Existing work on

query forms can be leveraged in creating the CADS

adaptive query forms. Jayapandian and Jagadish [2]

propose an algorithm to extract a query form that

represents most of the queries in the database using

the “querability” of the columns, while in [9] they

extend their work discussing forms customization.

IJDCST @Dec-2015, Issue- V-3, I-8, SW-14
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

54 www.ijdcst.com

Nardi and Jagadish [3] use the schema information to

autocomplete attribute or value names in query forms.

In [6], keyword queries are used to select the most

appropriate query forms. Our work can be considered

a dual approach: instead of generating query forms

using the database contents, we create the schema and

contents of the database by considering the content of

the query workload (and the contents of the

documents, of course). The work in USHER [11] is

also related: in USHER, the system automatically

decides which questions in a survey are the most

important to ask, given past experience with the

completion of past surveys. In a sense, USHER is

complementary to CADS: once we identify the

attributes and values in the documents using CADS,

we can then use USHER to model the dependencies

across attributes and minimize the number of

questions asked. Probabilistic models. Probabilistic

tag recommendation systems [12], [13] have a similar

goal like our system. However, the main difference is

that we use the query workload in our model,

reflecting the user interest.

ATTRIBUTES SUGGESTION

In this section, we study and propose solutions for the

“attributes suggestion” problem. From the problem

definition we identify two, potentially conflicting,

properties for identifying and suggesting attributes for

a document d: First, the attributes must have high

querying value (QV) with respect to the query

workload W. That is, they must appear in many

queries in W, because the frequent attributes in W

have a greater potential to improve the visibility of d.

Second, the attributes must have high content value

(CV) with respect to dt. That is, they must be relevant

to dt. Otherwise, the user will probably dismiss the

suggestions and d will not be properly annotated. We

combine both objectives, in a principled way, using a

probabilistic approach. Our theoretical model is

similar to the idea of language models [5], with one

key difference: our model assume that attributes are

generated by two processes, in parallel: 1) By

inspecting the content of the document and extracting

a set of attributes related to the content of the

document, following a probability distribution given

by an (unknown to us) joint probability distribution

and 2) By knowing the types of queries that users

typically issue to the database, following again a

(unknown to us) joint probability distribution. Of

course, the problem is inherently intractable, if we

consider all possible dependencies across attributes,

document content, and workload: it is very difficult to

estimate the full joint distribution of so many

variables. Following the common practice, when

estimating language models, we consider each

attribute Aj independently, and we compute the k

attributes that maximize p. Given W and d as the

forecasts from different sources of evidence, our

system (CADS) is the decision manager, with a

specific prior P4 that decides how to combine the

probability estimates from multiple sources. We

experiment with two approaches: we combine the

information from the forecasters assuming conditional

independence, given Aj; in we build an approach that

assumes conditional independence among the

forecasters.

Fig: 2 running example.

When we increase the size of the training set. As

expected, the proposed strategies increase their quality

when we increase the training data size. The QV line

is constant because it does not use the database but

only the query workload.

IV Conclusion

We present two ways to combine these two pieces of

evidence, content value and querying value: a model

that considers both components conditionally

independent and a linear weighted model we proposed

adaptive techniques to suggest relevant attributes to

annotate a document, while trying to satisfy the user

querying needs. Our solution is based on a

probabilistic framework that considers the evidence in

the document content and the query workload.

Experiments show that using our techniques, we can

suggest attributes that improve the visibility of the

documents with respect to the query workload by up

to 50 percent. That is, we show that using the query

workload can greatly improve the annotation process

and increase the utility of shared data.

References

[1] “Google,” Google Base,

http://www.google.com/base, 2011.

[2] S.R. Jeffery, M.J. Franklin, and A.Y. Halevy,

“Pay-as-You-Go User Feedback for Dataspace

Systems,” Proc. ACM SIGMOD Int’l Conf.

Management Data, 2008.

[3] K. Saleem, S. Luis, Y. Deng, S.-C. Chen, V.

Hristidis, and T. Li, “Towards a Business Continuity

Information Network for Rapid Disaster Recovery,”

Proc. Int’l Conf. Digital Govt. Research (dg.o ’08),

2008.

IJDCST @Dec-2015, Issue- V-3, I-8, SW-14
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

55 www.ijdcst.com

[4] A. Jain and P.G. Ipeirotis, “A Quality-Aware

Optimizer for Information Extraction,” ACM Trans.

Database Systems, vol. 34, article 5, 2009.

[5] J.M. Ponte and W.B. Croft, “A Language

Modeling Approach to Information Retrieval,” Proc.

21st Ann. Int’l ACM SIGIR Conf. Research and

Development in Information Retrieval (SIGIR ’98),

pp. 275-281,

http://doi.acm.org/10.1145/290941.291008, 1998.

[6] R.T. Clemen and R.L. Winkler, “Unanimity and

Compromise among Probability Forecasters,”

Management Science, vol. 36, pp. 767-779,

http://portal.acm.org/citation.cfm?id=81610.81609,

July 1990.

[7] B. Sigurbjo¨rnsson and R. van Zwol, “Flickr Tag

Recommendation Based on Collective Knowledge,”

Proc. 17th Int’l Conf. World Wide Web (WWW ’08),

pp. 327-336, http://doi.acm.org/10.1145/

1367497.1367542, 2008.

 [8] P.G. Ipeirotis, F. Provost, and J. Wang, “Quality

Management on Amazon Mechanical Turk,” Proc.

ACM SIGKDD Workshop Human Computation

(HCOMP ’10), pp. 64-67, http://doi.acm.org/

10.1145/1837885.1837906, 2010.

[9] R. Fagin, A. Lotem, and M. Naor, “Optimal

Aggregation Algorithms for Middleware,” J.

Computer Systems Sciences, vol. 66, pp. 614-656,

http://portal.acm.org/citation. cfm?id=

861182.861185, June 2003.

[10] K.C.-C. Chang and S.-w. Hwang, “Minimal

Probing: Supporting Expensive Predicates for Top-K

Queries,” Proc. ACM SIGMOD Int’l Conf.

Management Data, 2002.

[11] G. Tsoumakas and I. Vlahavas, “Random K-

Labelsets: An Ensemble Method for Multilabel

Classification,” Proc. 18th European Conf. Machine

Learning (ECML ’07), pp. 406-417,

http://dx.doi.org/10.1007/978-3-540-74958-5_38,

2007.

[12] M. Miah, G. Das, V. Hristidis, and H. Mannila,

“Standing out in a Crowd: Selecting Attributes for

Maximum Visibility,” Proc. Int’l Conf. Data Eng.

(ICDE), 2008.

[13] P. Heymann, D. Ramage, and H. Garcia-Molina,

“Social Tag Prediction,” Proc. 31st Ann. Int’l ACM

SIGIR Conf. Research and Development in

Information Retrieval (SIGIR ’08), pp. 531-538,

http://doi.acm.org/10.1145/1390334.1390425, 2008.

[14] Y. Song, Z. Zhuang, H. Li, Q. Zhao, J. Li, W.-C.

Lee, and C.L. Giles, “Real-Time Automatic Tag

Recommendation,” Proc. 31st Ann. Int’l ACM SIGIR

Conf. Research and Development in Information

Retrieval (SIGIR ’08), pp. 515-522,

http://doi.acm.org/10.1145/ 1390334.1390423, 2008.

[15] D. Eck, P. Lamere, T. Bertin-Mahieux, and S.

Green, “Automatic Generation of Social Tags for

Music Recommendation,” Proc. Advances in Neural

Information Processing Systems 20, 2008.

http://portal.acm.org/citation.cfm?id=81610.81609
http://doi.acm.org/10.1145/
http://doi.acm.org/
http://doi.acm.org/10.1145/

